60. Ditopic Ligands. The Synthesis of a Series of Phosphine-Functionalised Macrocycles

by Annick Carroy^a), C. Richard Langick^b), Jean-Marie Lehn^a)*, Karen E. Matthes^b), and David Parker^b)*

^a) Institut Le Bel, Université Louis Pasteur, 4, rue Blaise Pascal, F-67000 Strasbourg ^b) Department of Chemistry, University of Durham, South Road, Durham DH1 3LE, Great Britain

(12.II.86)

The synthesis of a series of phosphine-functionalised macrocycles, 1-6, is described. The combination of Nand O-sites with P- and S-sites provides ligands which may bind transition or non-transition metal ions; as a consequence, they give access to dinuclear complexes containing both a *Lewis* acid and a redox metallic site. Compounds 1.2 and 6 are heterodinucleating ligands capable of binding two dissimilar metals in proximity. Macrocycles 3-5 are homotopic ligands which may form homodinuclear complexes of transition metals.

Introduction. – Dinucleating macrocycles may be formed by linking together two chelating acyclic sub-units [1-3] or by functionalising a macrocyclic framework by attachment of two or more side chains [4]. Whereas the former may be symmetric or dissymetric, the latter are dissymetric by construction. In both types of ligand, metals may be held in proximity so that they may behave independently or cooperatively. The functionalised macrocyclic systems not only may exhibit the characteristics of mononuclear complexes (*e.g.* catalysis, recognition), but also afford an entry into the study of higher forms of molecular behaviour such as cooperativity and regulation.

There is a rich coordination chemistry of macrocyclic ligands, and the nature of the metals which may be complexed is determined by the nature, by the number, and by the arrangement of binding heteroatoms. Similarly, there is a very well-defined chemistry of metal-phosphine complexes, and many important catalytic processes depend upon their unique reactivity. Functionalisation of macrocycles with phosphine binding sites combines the features of both classes of substances and defines a versatile series of homo- and heterodinucleating ligands. Such heterotopic ligands may exhibit site selectivity in metal binding [5]: a 'hard' metal ion will preferentially bind to a 'hard' donor site such as a polyoxapolyazamacrocycle, while 'soft' metal ions will prefer phosphine binding sites.

We have studied a series of phosphine-functionalised macrocycles based either on 12-membered $[N_2O_2]$, $[N_2S_2]$, or $[NO_3]$ monocycles or on an 18-membered $[N_2O_4]$ cycle. Their synthesis is reported here. Some of the complexation properties of ligands 1–4 have been described earlier [4].

Design of the Macrocyclic Phosphines. – In ligands 1 and 2, the attachment of the two side chains to the 12-membered macrocycle yields dinucleating ligands capable of binding metals both within the macrocyclic cavity and between the functionalised side arms. A 12-membered ring is chosen so that the metal 'sits' on top of the ring rather than within the macrocycle, and the lateral ether O-atoms provide secondary binding sites so that the bound metal is held close to the P_2 binding site, rather than away from it, as in represen-

tation A. The 12- $[N_2S_2]$ and 12- $[N_2O_2]$ macrocycles bind quite strongly to Cu²⁺, Zn²⁺, Ag⁺, and Ni²⁺[6] [7], and the 12- $[N_2O_2]$ macrocycle with two hydroxyethyl side chains is known to bind strongly to Ca²⁺ [8].

The two P-atoms in 1 and 2 may bind to a metal to give *cis*- or *trans*-constitutional isomers. *trans*-Diphosphine complexes are well established with ligands in which the two P-atoms are well separated [9] and in systems in which the P-atoms are geometrically constrained to span *trans*-positions [10]. Ligands 1 and 2 should, therefore, permit the formation of heterodinuclear metal complexes *via* a two-step sequence. The macrocycle 1 is better suited for this purpose as the $[N_2O_2]$ and P_2 binding sites are clearly dissimilar.

With ligands 3, 4, and 5, a metal may simultaneously bind to the tertiary N-atom and to a P-atom to give a 5- or 6-membered [NP] chelate ring system. Complexes containing small [4] [11] and large ring [12] [NP] chelates are well established with square-planar d⁸ systems. The two NP binding units in 5 are sufficiently well separated to permit formation of homodinuclear complexes in which the two metals may either be held on opposite sides or on the same side of the macrocycle as in representation **B**. Ligand 6 may also form a 5-ring chelate with square-planar d⁸-metal ions, and the macrocycle O-atoms are still available for weak binding to a hard cation such as Li⁺. Alternatively, it may form 1:2 complexes with 2 phosphines binding *trans* or *cis* to a metal, leaving the 12-[NO₃] ring available for coordinating a 'hard' cation either separately or cooperatively.

Synthesis of the Macrocycles 1–6. – All the phosphines were prepared *via* routes formally involving the functionalisation of the secondary N-sites in the parent $[N_2O_2]$, $[N_2S_2]$, $[N_2O_4]$, or $[NO_3]$ monocycles. In each case the diphenylphosphine groups were introduced by reacting potassium diphenylphosphide with the appropriate alkyl chloride in dioxan [13].

Macrocycles 1 and 2 were prepared via identical routes as shown in *Scheme 1*. Reaction of 1,7-dioxa-4,10-diazacyclododecane (7a) with 3-oxaglutaric anhydride followed by reduction with diborane in tetrahydrofuran (THF) gave the diol 8a in 91%

yield. Treatment of **8a** with SOCl₂ gave the corresponding dichloride (see **16**, *Exper. Part*) as the dihydrochloride salt. The free amine is unstable in solution at room temperature and was liberated just prior to reaction with diphenylphosphide. The pure phosphine **1** was obtained in 45% yield after recrystallisation from MeOH. The corresponding $[N_2S_2]$ -based phosphine **2** was similarly obtained in 65% overall yield from the parent macrocycle **7b**.

Macrocycles **3** and **4**. Condensation of **7a** with ethylene oxide afforded the diol **9** which was converted to the corresponding dichloride by reaction with SOCl₂ at 0°. The dichloride was isolated as the stable dihydrochloride salt, and the freshly liberated amine reacted with KPPh₂ in dioxan at room temperature to give the diphosphine **3** in 44% yield (*Scheme 2*). The analogous cycle **4** was obtained via a different route (*Scheme 3*).

Reaction of 7b with chloroacetyl chloride in the presence of Et_3N afforded a bis(amide) (see 19, *Exper. Part*) in 90% yield. The amide groups were selectively reduced using diborane in THF at 0° to yield the dichloride 10 in 62% yield. Treatment of 10 with KPPh₂ in dioxan gave the diphosphine 4 in 63% yield.

Macrocyles 5 and 6. The addition of an excess methyl acrylate to the 18-[N₂O₄] macrocycle 11 gave an oily diester (see 20, *Exper. Part*) in 67% yield. Reduction of the ester groups with LiAlH₄ in THF afforded the diol 12 which was converted as above into the diphosphine 5 (*Scheme 4*). Similarly the ethanol derivative 13 was converted to the monophosphine 6 (*Scheme 5*).

Ligands 1–6 define a series of ditopic macrocycles which may bind two metals in close proximity. It has been shown that 1 and 2 form well defined heterodinuclear complexes [4] in which prior coordination of a cation within the macrocyclic cavity *regulates* the ligand structure aiding coordination of the second metal. The metals may be introduced in a stepwise manner, reacting the P_2 binding site with a d⁸-metal ion either prior or subsequent to coordination of a 'hard' cation within the macrocyclic cavity.

Ligands 3–6 have been shown to form [NP] chelate complexes with square planar d^8 -metal centres, and with 3 and 5 homodinuclear complexes of Pd(II), Pt(II) and Rh(I) may be isolated. These features and other binding properties of 1–6 will be reported later.

We thank SERC, the Royal Society, the British Council, and the CNRS for support.

Experimental Part

1. General. Reactions were carried out under Ar, and solvents were distilled prior to use from an appropriate drying agent. M.p.: *Reichert-Kofler* block; uncorrected. ¹H-NMR and ³¹P-NMR: *Bruker WP 200* or *Bruker WH 360*. ¹³C-NMR: *Varian XL 100* or *Bruker WP 200*. Chemical shifts are given in ppm relative to tetramethylsilane (TMS) or 85% phosphoric acid. MS: *LK-B9000S, Thomson-THW-200*, and *VG-7070E* spectrometers. Micro-analyses were performed either by the 'Service Central de Microanalyse du *CNRS*' or by Mrs. *M. Cocks*, University of Durham.

2. 1,7-Dioxa-4,10-diazacyclododecane-4,10-bis(γ -oxapentanol) (**8a**). To a soln. of 1,7-dioxa-4,10-diazacyclododecane (**7a**; 840 mg, 482 mmol) in CH₂Cl₂ (25 ml) was added a soln. of 3-oxaglutaric anhydride (= 1,4-dioxane-2,6-dione; 1.12 g, 9.65 mmol) in CH₂Cl₂ (10 ml), and the mixture was refluxed for 3 h. After evaporation, a 1.0m soln. of **B**₂H₆ in THF (30 ml) was carefully added at 0° and the mixture refluxed for 6 h. After cooling to 0°, MeOH (10 ml) was cautiously added, and solvents were evaporated. To the residue was added 6 m HCl (30 ml). The soln. was refluxed for 3 h and then evaporated. The crude **7a** · 2 HCl was dissolved in H₂O (20 ml) and passed over a column of *Dowex 1* × 8 in the basic form. Removal of H₂O gave **8a** as colourless oil (1.46 g, 91%). ¹H-NMR (CDCl₃): 2.70 (2t, 6 CH₂N); 3.56 (m, 8 CH₂O); 3.71 (t, 2 CH₂OH); 5.25 (br.s, 2 OH). ¹³C-NMR (CDCl₃): 72.7, 69.3, 68.9 (CH₂O); 61.4 (CH₂OH); 57.5, 55.7 (CH₂N). CI-MS(NH₃): 351 (*M*⁺ + 1), 307, 263, 162, 144, 100. Anal. calc. for C₁₆H₁₄N₂O₆ (350.4): C 54.8, H 9.70, N 7.99; found: C 550, H 9.83, N 7.61.

3. 4,10-Bis(5-chloro-3-oxapentyl)-1,7-dioxa-4,10-diazacyclododecane (16). To a soln. of 8a (488 mg, 1.39 mmol) in MeOH (25 ml) was added 26M HCl (2 ml), and the soln. was evaporated to dryness. To the residue was

added freshly distilled SOCl₂ (15 ml) and the mixture stirred for 16 h. After removal of SOCl₂ under reduced pressure, the residue was twice entrained with abs. EtOH (2 × 10 ml), then redissolved in H₂O (20 ml), washed with CH₂Cl₂ (2 × 20 ml), basified with excess Me₄NOH, and the aq. phase extracted with CH₂Cl₂ (4 × 20 ml). After drying over MgSO₄, the solvent was evaporated to yield **16** as a viscous pale yellow oil (557 mg, 90%) which was not stable and was stored as **16** · 2 HCl. ¹H-NMR (CDCl₃): 2.76 (*m*, 6 CH₂N); 3.45 (*m*, 20 H, CH₂O, CH₂Cl). ¹³C-NMR (**16** · 2 HCl, CD₃OD): 73.3, 66.8, 66.6 (CH₂O); 59.7, 57.2 (CH₂N); 44.9 (CH₂Cl). MS (**16** · 2 HCl): 388 (*M*⁺ + 1), 307, 293, 180, 150, 100. Anal. calc. for C₁₆H₃₂Cl₂N₂O₄ (387.3): C 49.6, H 8.26, N 7.23; found: C 50.0, H 8.48, N 7.51.

4. [5,5'-(1,7-Dioxa-4,10-diazacyclododecane-4,10-diyl)bis(3-oxapentyl)]bis(diphenylphosphine) (= 4,10-bis[5-(diphenylphosphino)-3-oxapentyl]-1,7-dioxa-4,10-diazacyclododecane; 1). K (196 mg, 5.01 mmol) and Na (40 mg) were melted together in a*Schlenk*tube under dry Ar. A soln. of PPh₃ (650 mg, 2.48 mmol) in dioxan (12 ml) was added by steel cannula and the mixture stirred vigorously for 2 h. To the resultant bright orange suspension was added freshly liberated free amine 16 (480 mg, 1.24 mmol) in toluene (10 ml) at -78°, and the mixture was allowed to return to r.t. and stirred for a further 15 min. After filtering through a short pad of*Celite*, the solvents were removed*in vacuo*to yield a pale orange oil which was triturated with MeOH at -78° to give 1 as a white precipitate which was filtered and dried under vacuum (384 mg, 45%), m.p. 78-79°. ¹H-NMR (CDCl₃): 7.50-7.32 (*m*, 20 arom. H); 3.55 (*t*, 4 CH₂O, ring); 3.46 (*t*, 2 CH₂O); 3.52 (*m*, 2 CH₂O); 2.67 (*t*, 4 CH₂N); 2.64 (*t*, 2 CH₂N); 2.39 (*t*, 2 CH₂P). ³¹P-NMR ((CD₃)₂CO): - 19.8. MS: 686 (*M*⁺), 447, 333, 329, 315, 291. Anal. calc. for C₄₀H₅₂N₂O₄P₂ (686.8): C 69.9, H 7.63, N 4.08, P 9.02; found: C 69.9, H 7.70, N 4.20, P 9.10.

5. 1,7-Dithia-4,10-diazacyclododecane-4,10-bis(γ -oxapentanol) (**8b**). To a soln. of 1,7-dithia-4,10-diazacyclododecane (7b; 524 mg, 4.0 mmol) in CH₂Cl₂ (20 ml) was added a soln. of 3-oxaglutaric anhydride (928 mg, 0.8 mmol) in CH₂Cl₂ (10 ml), and the mixture was refluxed for 3 h. After reducing the volume (10 ml), a 1.1M soln. of B₂H₆ in THF (30 ml) was added at 0° and the mixture stirred for 48 h at 40°. Excess borane was destroyed by careful addition of MeOH at 5° (10 ml), and solvents were evaporated. The residue was treated with 6M HCl (30 ml), refluxed for 3 h, and evaporated to dryness. After entraining with MeOH (4 × 15 ml), the soln. was allowed to stand at 4° when the salt **8b** · 2 HCl crystallised slowly, m.p. 207–208°. The free amine was liberated by addition of excess Me₄NOH, followed by extraction with CH₂Cl₂ (4 × 20 ml), concentration of the soln. to 10 ml and passage over a short alumina column to yield **8b** as a colourless oil (7.61 g, 90%). ¹H-NMR (CDCl₃): 2.58 (*t*, 2 CH₂N); 2.71 (*m*, 16 H, CH₂N,CH₂S); 3.45 (2*t*, 4 CH₂O); 3.55 (*t*, 2 CH₂OH). ¹³C-NMR (CDCl₃): 7.9 (NCH₂CH₂O); 69.05 (OCH₂CH₂OH); 62.1 (CH₂OH); 55.4 (NCH₂CH₂O); 54.9 (NCH₂CH₂S); 27.7 (CH₂S). MS: 382 (*M*⁺), 349, 225, 178, 144, 116. Anal. calc. for C₃₆H₃₄N₂O₄S₂ (382.6): C 50.2, H 8.96, N 7.32; found: C 50.5, H 9.11, N 7.45.

6. 4,10-Bis(5-chloro-3-oxapentyl)-1,7-dioxa-4,10-diazacyclododecane (17). As in Exper. 3, with **8b** (764 mg, 2.0 mmol), MeOH (15 ml), 6M HCl (10 ml), and SOCl₂ (15 ml). Following removal of SOCl₂ under reduced pressure, the residue was entrained with EtOH (3 × 10 ml) and finally recrystallised from EtOH at 5° to give 17 · 2 HCl as a crystalline solid (950 mg, 96%), m.p. 193–195°. ¹³C-NMR (D₂O): 68.1 (NCH₂CH₂O); 60.2 (OCH₂CH₂); 51.2 (NCH₂CH₂O); 48.6 (NCH₂CH₂S); 40.2 (CH₂Cl); 26.6 (CH₂). MS (17 · 2 HCl): 420 (M^+ + 1), 419 (M^+), 389, 349, 313, 207. Anal. calc. for C₁₆H₃₄Cl₄N₂O₂S₂ (492.3): C 39.2, H 6.96, N 5.69, Cl 14.4; found: C 39.2, H 7.07, N 5.80, Cl 14.1.

7. [5,5'-(1,7-Dithia-4,10-diazacyclododecane-4,10-diyl)bis(3-oxapentyl)]bis(diphenylphosphine) (= 4,10-bis[5-(diphenylphosphino)-3-oxapentyl]-1,7-dithia-4,10-diazacyclododecane;**2**). As in*Exper. 4*with**K**(64 mg, 1.64 mmol), Na (15 mg, 0.65 mmol), PPh₃ (210 mg, 0.81 mmol), dioxan (10 ml), and**17**(170 mg, 0.4 mmol) in toluene (5 ml; addition at 0°, 15 min at 0°). After filtration through a short*Celite*pad, solvents were evaporated to yield a pale yellow oil which, on trituration with MeOH (10 ml), gave a white precipitate of**2**which was filtered and dried*in vacuo*: 215 mg (75%), m.p. 93–94°. ¹H-NMR (CD₂Cl₂): 2.36 (*t*, 2 CH₂P); 2.58 (*t*, 2 CH₂N); 2.71 (*m*, 16 H, CH₂S,CH₂N); 3.45 (*t*, 2 CH₂O); 3.56 (*t*, 2 CH₂O); 7.30–7.47 (*m*, 20 arom. H). ³¹P-NMR ((CD₃)₂CO): –20.3. MS: 718 (*M*⁺), 685, 684, 360, 346, 326. Anal. calc. for C₄₀H₅₂N₂O₂P₂S₂ (718.9): C 66.8, H 7.29, N 3.90, S 8.92; found: C 66.9, H 7.32, N 3.98, S 9.02.

8. 1,7-Dioxa-4,10-diazacyclododecane-4,10-diethanol (9) was prepared as the dihydrochloric salt according to [8], m.p. 198–200° ([8]: m.p. 219–222°). ¹H-NMR (D₂O): 3.54 (br. t, 2 CH₂N); 3.68 (m, 4 CH₂N); 3.94 (m, 4 CH₂O); 4.08 (br. t, 2 CH2OH). ¹³C-NMR (D₂O): 64.4 (CH₂O); 58.5 (CH₂OH); 55.6 (CH₂N); 54.7 (CH₂N). MS: 263 (M^+ + 1), 262 (M^+), 217, 216, 175, 174. Anal. cale. for C₁₂H₂₈Cl₂N₂O₄ (335.2): C 43.0, H 8.36, N 8.36; found: C 43.2, H 8.51, N 8.20.

9. 4,10-Bis(2-chloroethyl)-1,7-dioxa-4,10-diazacyclododecane (18). To $9 \cdot 2$ HCl (384 mg, 10 mmol) was added SOCl₂ (10 ml) and the mixture stirred for 16 h at r.t. After removal of SOCl₂ under reduced pressure, the residue

585

was entrained with EtOH (2 × 10 ml) and recrystallised from abs. EtOH to give **18** · 2 HCl as a crystalline solid (378 mg, 90%), m.p. 178–180°. ¹H-NMR (D₂O): 3.66 (*m*, 4 CH₂N); 3.78 (*t*, 2 CH₂Cl); 3.92 (*m*, 4 CH₂O); 4.05 (*t*, 2 CH₂N⁺). ¹³C-NMR (D₂O): 64.3 (CH₂O); 57.6 (CH₂N); 54.6 (CH₂N); 36.4 (CH₂Cl). MS: 300 (M^+ + 1), 299, 256, 236, 181, 151. Anal. calc. for C₁₂H₂₆Cl₄N₂O₂ (371.1): C 38.7, H 6.99, N 7.52; found: C 38.4, H 7.21, N 7.30.

10. [2.2'-(1,7-Dioxa-4,10-diazacyclododecane-4,10-diyl)bis(ethyl)]bis(diphenylphosphine) (= 4,10-bis[2-(diphenylphosphino)ethyl]-1,7-dioxa-4,10-diazacyclododecane;**3**). As in*Exper. 4*, with K (156 mg, 4.0 mmol), Na (25 mg), PPh₃ (524 mg, 2.0 mmol), dioxan (10 ml), and**18**(300 mg, 1.0 mmol) in toluene (5 ml; addition at -20°, 15 min at r.t.). After filtering through a short*Celite*pad, solvents were evaporated. The resultant yellow oil was redissolved in toluene, passed over a short alumina column, and, after removal of toluene, triturated with MeOH (10 ml) at -78° yielding a white solid which was filtered and dried under vacuum: 263 mg (44%) of**3**, m.p. 107-109°. ¹H-NMR (CD₂Cl₂): 2.25 (*m*, 2 CH₂P); 2.64 (*m*, 6 CH₂N); 3.49 (br.*t*, 4 CH₂O); 7.30–7.47 (*m*, 20 arom. H). ³¹P-NMR (CD₂Cl₂): -18.9. MS: 598 (*M*⁺), 565, 228, 201, 175, 174. Anal. calc. for C₃₆H₄₄N₂O₂P₂ (598.7): C 72.2, H 7.41, N 4.69; found: C 72.0, H 7.09, N 4.81.

11. 2.2'-Dichloro-N,N':N,N'-bis(3-thiapentane-1,5-diyl)bis(acetamid) (= 4,10-bis(chloroacetyl)-1,7-dithia-4,10-diazacyclododecane; **19**). To a soln. of **7b** (415 mg, 1.8 mmol) in CH₂Cl₂ (50 ml) was added dry Et₃N (412 mg, 4.08 mmol) and chloroacetyl chloride (406 mg, 3.6 mmol) at 0°. After stirring for 15 h, the soln. was washed successively with aq. 10M NaOH (2 × 50 ml), 10M HCl (2 × 20 ml), sat. brine (2 × 15 ml), and H₂O (2 × 20 ml), dried over MgSO₄, filtered, and reduced to $\frac{1}{3}$ of its original volume. The precipitate formed was filtered, washed with acetone (2 × 5 ml), and dried *in vacuo* to give **19** as a colourless solid (570 mg, 90%), m.p. 174–176°. IR (Nujol): 1650, 1644. MS: 360 (M^+ + 1), 359 (M^+), 288, 260, 235, 234. Anal. calc. for C₁₂H₂₀Cl₂N₂O₂S₂ (359.3): C 40.1, H 5.61, N 7.79; found: C 39.9, H 5.61, N 8.06.

12. 4,10-Bis(2-chloroethyl)-1,7-dithia-4,10-diazacyclododecane (10). To a suspension of 19 (710 mg, 198 mmol) in CH₂Cl₂ (10 ml) was added B₂H₆ in THF (1.0m, 6 ml) at 0°. The suspension was stirred for 24 h, and excess borane destroyed by careful addition of MeOH (15 ml). Removal of solvents gave a residue which was extracted with CHCl₃ (3 × 15 ml). The extracted aminoborane was hydrolysed with 6m HCl (20 ml) by refluxing for 3 h. After evaporating to dryness and basifying with Me₄NOH, the product was extracted with CH₂Cl₂ (4 × 15 ml) and passed through a short alumina column and the solvent removed to yield 10 as a colourless solid (406 mg, 62%), m.p. 87–89°. ¹H-NMR (CDCl₃): 2.76 (m, 20 H, CH₂N, CH₂S); 3.54 (t, 2 CH₂Cl). ¹³C-NMR (CDCl₃): 57.2 (CH₂N); 54.3 (CH₂N); 41.8 (CH₂Cl); 28.1 (CH₂S). MS: 328 (M⁺ + 1), 327 (M⁺), 299, 297, 261, 199. Anal. calc. for C₁₂H₂₄Cl₂N₂S (327.3): C 44.0, H 6.16, N 8.56; found: C 43.9, H 6.23, N 8.9.

13. [2,2'-(1,7-Dithia-4,10-diazacyclododecane-4,10-diyl)bis(ethyl)]bis(diphenylphosphine) (= 4,10-bis[2-(diphenylphosphino)ethyl]-1,7-dithia-4,10-diazacyclododecane; 4). As in*Exper. 4*, with K (104 mg, 2.66 mmol), Na (25 mg), PPh₃ (348 mg, 133 mmol), dioxan (10 ml), and**10**(218 mg, 0.67 mmol) in dry toluene (5 ml) (addition at 0°, 20 min at 0°). After filtration through a short*Celite*pad, the solvents were evaporated to yield a viscous oil which gave a white solid on trituration with MeOH (10 ml): 410 mg (63%) of**4**, m.p. 131–133°. ¹H-NMR (CDCl₃): 2.21 (*m*, 2 CH₂P); 2.49 (*m*, 4 CH₂S); 2.63 (*m*, 6 CH₂N); 7.20–7.35 (*m*, 20 arom. H). ³¹P-NMR ((CD₃)₂CO): -18.3. MS: 630 (*M*⁺), 597, 553, 445, 316, 185. Anal. calc. for C₂₄H₄₄N₂P₂S₂ (630.8): C 68.5, H 7.03, N 4.44; found: C 68.6, H 7.10, N 4.51.

14. Dimethyl 1,4,10,13-Tetroxa-7,16-diazacyclooctadeca-7,16-dipropionate (**20**). To a soln. of **11** (1.5 g, 5.72 mmol) in dry MeOH (15 ml) was added freshly distilled methyl 2-propenoate (2.5 g, 28.5 mmol) and the mixture stirred for 16 h. After evaporation, the residue was chromatographed on neutral alumina with CH₂Cl₂/MeOH 99:1 to yield **20** as a pale yellow oil (1.67 g, 67%). ¹H-NMR (CDCl₃): 2.77 (*m*, 16 H, CH₂N, CH₂CO); 3.43 (*m*, 22 H, CH₂O, CH₃O). ¹³C-NMR (CDCl₃); 170.7 (CO₂Me); 70.8, 70.1 (CH₂O); 54.4 (CH₃O); 52.1, 51.6 (CH₂N); 33.6 (CH₂CO). Anal. calc. for C₂₀H₃₈N₂O₈ (434.5): C 56.2, H 8.81, N 6.45; found: C 55.9, H 9.03, N 6.71.

15. 1,4,10,13-Tetroxa-7,16-diazacyclooctadecane-7,16-dipropanol (12). To a soln. of 20 (1.5 g, 3.45 mmol) in THF (100 ml) was added LiAlH₄ (1 g) and the mixture refluxed for 24 h. After cooling, H₂O (2 ml) and a 10% LiOH soln. were added, followed by MgSO₄ (1 g). The suspension was filtered, evaporated to dryness, and the residue treated with 1m HCl (50 ml). The aq. phase was washed with CH₂Cl₂ (3 × 50 ml), the pH adjusted to 14 by adding Me₄NOH, and the product extracted with CH₂Cl₂ (4 × 25 ml). After drying over MgSO₄, the solvent was evaporated to leave 12 as a colourless oil (1.08 g, 81%). ¹H-NMR (CDCl₃): 1.70 (*quint.*, 2 CH₂); 2.73 (*m*, 6 CH₂N); 3.63 (*m*, 8 CH₂O). ¹³C-NMR (CDCl₃): 72.3, 71.0 (CH₂O); 65.4 (CH₂OH); 57.2, 55.5 (CH₂N); 30.0 (CH₂). Anal. calc. for C₁₈H₃₈N₂O₆ (378.5): C 57.1, H 10.1, N 7.40; found: C 56.8, H 9.91, N 7.13.

16. 7,16-Bis(3-chloropropyl)-1,4,10,13-tetroxa-7,16-diazacyclooctadecane (21). As in Exper. 3, with 12 (1.04 g, 2.64 mmol), MeOH (20 ml), 6M HCl (1 ml), and SOCl₂ (20 ml) for 16 h at r.t., then for 2 h at reflux. Excess SOCl₂ was evaporated and the residue entrained with abs. EtOH (2×10 ml). The salt was recrystallised from EtOH/Et₂O 4:1 to give 21 · 2 HCl as a colourless solid (1.13 g, 88%), m.p. 176–178°. ¹H-NMR (CDCl₃): 1.93 (*quint.*, CH₂CH₂); 2.77 (*m*, 6 CH₂N); 3.63 (*m*, 20 H, CH₂O, CH₂Cl₂). ¹³C-NMR (CDCl₃): 72.1, 66.3 (CH₂O); 55.5, 53.6 (CH₂N); 43.4 (CH₂Cl); 28.1 (CH₂). Anal. calc. for C₁₈H₃₈Cl₄N₂O₄ (488.2): C 44.3, H 7.84, N 5.73; found: C 44.2, H 7.86, N 5.70.

17. [3,3'-(1,4,10,13-Tetroxa-7,16-diazacyclooctadecan-7,16-diyl)bis(propyl)]bis(diphenylphosphine) (= 7,16-bis[3-(diphenylphosphino)propyl]-1,4,10,13-tetroxa-7,16-diazacyclooctadecane; 5). As in*Exper. 4*, with K (47 mg, 1.12 mmol), Na (15 mg), PPh₃ (157 mg, 0.6 mmol), dioxan (5 ml), and**21** $(124 mg, 0.3 mmol) in toluene (5 ml; addition at <math>-10^\circ$, 15 min at r.t.). After filtering through a short *Celite* pad, solvents were evaporated, and the residue was taken up in 0.2m degassed HCl (20 ml), washed with CH₂Cl₂ (2 × 10 ml), basified with Me₄NOH, and the product extracted into CH₂Cl₂ (3 × 10 ml). Solvent was evaporated to yield a colourless oil which was triturated with dry EtOH (5 ml) to give 5 as a white solid (100 mg, 45%), m.p. 114–115°. ¹H-NMR (CD₂Cl₂): 1.54 (*m*, 2 *CH*₂CH₂P); 2.05 (*m*, 2 CH₂P); 2.55 (*t*, 2 CH₂N); 2.64 (*t*, 4 CH₂N); 3.49 (*t*, 4 CH₂O); 3.51 (*s*, 4 CH₂O); 7.29–7.45 (*m*, 20 arom. H). ³¹P-NMR (CD₂Cl₂): -2.47. MS: 714 (*M*⁺), 653, 639, 529, 399. Anal. calc. for C₄₂H₂6_{N2}O₄P₂ (714.8): C 70.6, H 7.90, N 3.92; found: C 70.3, H 8.08, N 3.81.

18. 10-(2-Chloroethyl)-1,4,7-trioxa-10-azacyclododecane (22). As in Exper. 3, with 13 (prepared according to [14]; 1.15 g, 5.0 mmol), MeOH (20 ml), a few drops of conc. HCl, and SOCl₂ (10 ml) for 16 h at r.t., then for 1 h at reflux. After removal of excess SOCl₂ under reduced pressure, the residue was entrained with EtOH (2 × 10 ml) and the product 22 · 2 HCl recrystallised from i-PrOH at 5°: 1.14 g (83%), m.p. 182–184°. ¹H-NMR (D₂O): 3.60 (m, 2 CH₂N); 3.81 (t, CH₂Cl); 3.94 (m, 6 CH₂O); 4.08 (t, CH₂N⁺H). MS: 239 (M⁺ + 1), 238 (M⁺), 186, 171, 157, 121, 103. Anal. cale. for C₁₀H₂₁Cl₂NO₃ (274.1): C 43.8, H 7.72, N 10.2; found: C 44.0, H 8.01, N 10.1.

19. Diphenyl [2-(1,4,7-trioxa-10-azacyclododec-10-yl)ethyl]phosphine (= 10-[2-(diphenylphosphino)ethyl]-1,4,7-trioxa-10-azacyclododecane; **6**). As in *Exper. 4*, with K (296 mg, 7.6 mmol), Na (50 mg, 2.17 mmol), PPh₃ (996 mg, 38 mmol), dioxan (10 ml), and **22** (770 mg, 3.79 mmol) in toluene (10 ml; addition at 10°, 20 min at 10°). After filtration through a short *Celite* pad, solvents were evaporated to give a yellow oil which was redissolved in toluene (5 ml) and passed over a short column of alumina to yield **6** as a colourless oil (600 mg, 41 %). ¹H-NMR (C₆D₅CD₃): 1.8–2.5 (*m*, 8 H, CH₂N,CH₂P); 2.8–3.4 (*m*, 6 CH₂O); 6.9–7.4 (*m*, 10 arom. H). ³¹P-NMR (CDCl₃): -20.9. Cl-MS (Isobutane): 388 (M^+ + 1) 387 (M^+), 354, 213, 189, 176. Anal. calc. for C₂₂H₃₀NO₃P (387.5): C 68.2, H 7.76, N 3.62; found: C 67.8, H 7.91, N 3.81.

REFERENCES

- J. M. Lehn, in 'Frontiers of Chemistry' (I.U.P.A.C.), Ed. K. J. Laidler, Pergamon, New York, 1982, p. 265;
 J. M. Lehn, Pure Appl. Chem. 1980, 52, 2441.
- [2] D. Parker, J. Chem. Soc., Chem. Commun. 1985, 1129; M. G. B. Drew, M. Mc Cann, S. M. Nelson, J. Chem. Soc., Chem. Commun. 1979, 481.
- [3] J. M. Lehn, D. Parker, J. Rimmer, J. Chem. Soc., Dalton Trans. 1985, 157.
- [4] B.A. Bryce, A. Carroy, J.M. Lehn, D. Parker, J. Chem. Soc., Chem. Commun. 1984, 1546.
- [5] C.S. Kraihanzel, E. Sinn, M.C. Gray, J. Am. Chem. Soc. 1981, 103, 960; J. Powell, C. J. May, ibid. 1982, 104, 2636; D.A. Wolobelski, T.B. Rauchfuss, ibid. 1982, 104, 2314.
- [6] A. H. Alberts, J. M. Lehn, D. Parker, J. Chem. Soc., Dalton Trans. 1985, 2311.
- [7] F. Arnaud-Neu, M.C. Almasio, B. Spiess, M.J. Schwing-Weill, S.A. Sullivan, J.M. Lehn, Helv. Chim. Acta 1985, 68, 831.
- [8] E. Amble, J. Dale, Acta Chem. Scand., Ser. B 1979, 33, 698.
- [9] W. E. Hill, C. A. Mc Auliffe, I. E. Niven, R. V. Parish, Inorg. Chim. Acta 1980, 38, 273.
- [10] N.J. DeStefano, D.K. Johnson, L.M. Venanzi, *Helv. Chim. Acta* 1976, 59, 2683; P. Boron-Rottore, D.M. Grove, L.M. Venanzi, *ibid.* 1984, 67, 65.
- [11] D. M. Ranchill, R. A. Bechtold, S. A. Randhill, Inorg. Chem. 1980, 19, 284.
- [12] C.R. Langmock, D. Parker, Inorg. Chim. Acta, in press.
- [13] B.A. Murrer, J.M. Brown, P.A. Chalance, P.N. Nicholson, D. Parker, Synthesis 1979, 350.
- [14] M. J. Caverley, J. Dale, Acta. Chem. Scand., Ser. B 1982, 36, 241.